
Journal of Sound and <ibration (1999) 228(4), 889}914
Article No. jsvi.1999.2455, available online at http://www.idealibrary.com on

0

MATHEMATICAL MODELLING AND SIMULATION OF
VIBRATION CONTROL RESPONSE OF INTERMEDIATE
SUPPORT PARAMETERS IN A HANGING CANTILEVER

M. M. NAZEER, A. F. KHAN AND M. AFZAL

Dr. A. Q. Khan Research ¸aboratories, P.O. Box 502, Rawalpindi, Pakistan

AND

N. AHMED

Mathematics Department, Quaid-i-Azam ;niversity, Islamabad, Pakistan

(Received 16 September 1998, and in ,nal form 11 June 1999)

Randomly excited vibrations in a vertically hanging cantilever can be damped
and controlled by an intermediate support comprising a support tube and an
annular ring holding the cantilever at the bottom of the tube. A number of
parameters like length and sti!ness of the support tube, sti!ness of the annular ring,
mounting position of the ring with respect to cantilever end and nature of the
support provided by the ring may a!ect the damping in the system. In this work,
a mathematical model is developed to simulate the system in order to see the role of
these parameters in damping and controlling the vibrations of the cantilever.
The computed results for an experimental set-up are discussed and analyzed to
elaborate the response of support tube parameters and sti!ness of the annular ring.
It is observed that knowing the possible range of perturbation frequency and
amplitude, the intermediate support parameters can be adjusted to successfully
overcome the vibration problem.

( 1999 Academic Press
1. INTRODUCTION

A long vertically hanging cantilever is always prone to oscillations whenever
disturbed by an earthquake or when it experiences an intermittent high-pressure or
high-speed #uid #ow perturbations. The e!ect becomes devastating when such
a cantilever is in the vicinity of a member moving or rotating at an ultrahigh speed,
where a small disturbance reduces the micro clearance between the relatively
moving surfaces to zero and hence destabilizes the whole system. One such example
is that of a gas feed system comprising a set of vertically hanging tubes rigidly
mounted at their top. Their bottom ends are free to oscillate within an
ultrahigh-speed rotating cylinder under any external or internal disturbance.
Impacts of various #ows and machine parameters on vibration of these tubes
leading to machine crash were studied in reference [1]. The idea of control of these
vibrations by magnet pairs of similar and opposite polarities was discussed in
022-460X/99/490889#26 $30.00/0 ( 1999 Academic Press



Figure 1. Cantilever with intermediate support.
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references [2, 3]. In reference [4], damping achieved experimentally with the help of
a loose spring skirting the tube was analyzed. Its mathematical model, computer
simulations and detailed analyses of simulated and experimentally observed results
of various parameters were presented in references [5}9]. In the present work, the
vibration response of the system (Figure 1) having no spring is studied with regard
to mechanical and geometrical properties of its components. The system is
composed of two concentric tubes having variable lengths, rigidly "xed at their top
at di!erent levels. The inner tube extends beyond the outer support tube which
constrains it with the help of an annular ring at its bottom end. This will increase
the rigidity of the inner tube and protect it from devastation of #ow-induced and
earthquake-excited oscillations by limiting its vibration amplitude. Factors such as
length and thickness of the outer tube, the sti!ness of the annular ring and its
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position along the length of the inner tube a!ect the vibration response of the whole
system.

The change in #exural sti!ness (EI) due to variation in one or more properties
like cross-sectional area, shape, orientation with respect to the particular set of axis,
material properties or attachments make the system very complex. Change in any
of these quantities with the length forms a new segment and thus the total length of
the cantilever is divided into a number of segments each having constant properties
over the segment length. The segments are numbered from bottom to top, while the
impressed force axis is in the horizontal plane and the local and global Z-axes are
collinear and point downwards to the bottom end of the lever as shown in Figure 2.
Global origin is at the top, i.e., at the "xed end of the cantilever and local origin of
a segment is at its own upper end. Viscous damping of the system is intentionally
ignored to clearly see the undamped response of the model and its parameters. The
longitudinal vibrations and lateral e!ect of weight of suspended masses in the
displaced position on bending and detailed analysis of response of higher mode
shapes are deferred presently for simplicity. Also, only the end excitation to give end
displacement is considered for the time being and the rest, i.e., multi-point and
distributed loads are deferred for subsequent work.

2. MULTI-LINK MULTI-SEGMENT CANTILEVER

The system under study is composed of two concentric tubes with sizable annular
clearance and rigid supports at their top end at relatively di!erent heights.
The inner thinner tube projects beyond the outer (Figure 1) and is exposed to
intermittent vibration exciting force. The two tubes are coupled together at the
bottom end of the shorter outer tube with the help of an annular ring of #exible
material to minimize the vibration amplitude of the inner tube. The outer and inner
tubes may have multi-segments depending upon second moment of area, material
properties or attachments. The system may be represented by multi-link
multi-segment cantilever with two-dimensional line diagram shown in Figure 2.
The links are denoted by =

m
, where m refers to the link number.

The de#ection at a point in a beam is given by the equation [10}12]

yA"
d2y
dz2

"

M*
EI

"

(¸!z)F#M@
EI

, (1)

where M* is the overall bending moment at the point, being sum of M@, the pure
bending moment exerted at the end of the beam, and due to bending force, F acting
at a distance ¸!z from the point. Here EI is the #exural rigidity of the
cross-section of the beam at that point. Let, in general, the mth link of the cantilever
be of n segments, numbered from bottom to the top and the system of co-ordinates
be local for each segment, such that its origin is at the top of the respective segment,
z in downward direction along the cantilever length, x and y in the radial direction
passing through the center of the lever perpendicular to each other and parallel to
the global set of X- and >-axes as shown in Figure 2. Thus, the global X-axis and
all the local x-axes are coplanar and parallel to exciting force F

x
and global >-axis,



Figure 2. Line diagram of cantilever with intermediate support.
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and all the local y-axes are coplanar and parallel to exciting force F
y
. Hence, the

x and y co-ordinates are the same for both the local and global sets of axes, while
the z co-ordinate is di!erent for local and global systems only in magnitude and
origin position. Let l

m, i
be the length of the ith segment and ¸

m, i
be the distance of

its origin from the bottom end of the lever, the point of application of the exciting
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force F
x

and F
y
. Then,

1̧
m, i

"l
m,1

#l
m,2

#2#l
m, i

"

i
+
j/1

l
m, j

. (2)

The force F
y
at the bottom end of the cantilever will induce forces F

y,m
and the

pure bending moments M@
y,m

at the bottom end of the mth link. If the annular ring is
#exible, only the force, F

y,3
, will be transmitted to the link=

3
given by

F
y,3

"k
S
(>

2,1
!>

3,1
),

where k
S

is the sti!ness of the annular #exible ring and >
2,1

and >
3,1

are the end
de#ections of the two links denoted by=

2
and=

3
in Figure 2. This means that the

pure bending moments induced at the end of links =
1

and =
3

are both zero. In
general, however, the force and the bending moment will be shared by the two.
Hence,

M@
y,1

"0.

At the point D on the link=
2
, bending moment M@

y
and a force F

y
will be exerted

due to the force F
y

acting at the terminal end of the link=
1
, where

M@
y
"F

y
1̧
1,n

"M@
y,2

#M@
y,3

"(c
2
#c

3
)M@

y
,

i.e.,

M@
y, i
"c

i
M@

y
,

where c
1
"0 and c

2
#c

3
"1.

Also the force F
y
will be shared by the link =

3
as given by the equation

F
y
"F

y,1
"F

y,2
#F

y,3
"(a

2
#a

3
)F

y
,

that is,

F
y,m

"a
m
F

y
,

where a
1
"1, a

3
"F

y
/F

y,3
and a

2
"1!a

3
.

Thus, from equation (1), the de#ection y
m, i

of the ith segment of the mth link is
given by the equation

yA
m, i

"

( 1̧
m, i

!z
m, i

)F
y,m

#M@
y,m

E
m, i

I
m, i

or

yA
m, i

"

( 1̧
m, i

!z
m, i

)a
m
F
y
#c

m
M@

y
E
m, i

I
m, i

which for m"1, reduces to the equation given by

yA
m, i

"

( 1̧
m, i

!z
m, i

)a
m
F

y
E
m, i

I
m, i
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while for m"2 or 3, the equation is

yA
m, i

"

( 1̧
m, i

!z
m, i

)a
m
F
y
#c

m
M@

y
E
m, i

I
m, i

or

yA
m, i

"

( 1̧
m, i

!z
m, i

)a
m
F

y
#c

m
F

y
1̧
1,n

E
m, i

I
m, i

"

( 1̧
m, i

#c
m

1̧
1,n

/a
m
!z

m, i
)a

m
F
y

E
m, i

I
m, i

Thus, in general, the lateral de#ection of a cantilever link is given by

yA
m, i

"

(¸
m, i

!z
m, i

)a
m
F

y
E
m, i

I
m, i

(3)

where

¸
m, i

" 1̧
m, i

#r
m

1̧ 1, n
1
.

Here r
m
"c

m
/a

m
with c

1
"0 for m"1. Similar expressions for de#ection in the

x direction will evolve with F
x

in place of F
y

and b
m

in place of a
m
.

3. MULTI-SEGMENT CANTILEVER DEFLECTION

From equation (3), the de#ection in the y direction of a point P on the ith
segment at distance z

m, i
from its local origin as shown in Figure 3 is given by

yA
m, i

"(¸
m, i

!z
m, i

)
F

m,y
E

m, i,x
I
m, i,x

"(¸
m, i

!z
m, i

)
a
m
F

y
E

m, i,x
I
m, i,x

"A
m, i,y

(¸
m, i

!z
m, i

)a
m
F

y
(4)

and in the x direction,

xA
m, i

"(¸
m, i

!z
m, i

)
F

m,x
E
m, i,y

I
m, i,y

"(¸
m, i

!z
m, i

)
b
m
F

x
E
m, i,y

I
m, i,y

"A
m, i,x

(¸
m, i

!z
m, i

)b
m
F
x
, (5)

where F
x
and F

y
are the end-exciting forces, F

m,x
and F

m,y
are the forces induced at

the bottom end of the mth link and z
m, i

is the local co-ordinate of the point P under
consideration. Here,

A
m, i,y

"

1
E
m, i,x

I
m, i,x



Figure 3. Segmented mth link of cantilever.
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and

A
m,x,y

"

1
E

m, i,y
I
m, i,y

.

Dropping the subscripts x and y and considering only the y direction for the time
being, the corresponding equations are

yA
m, i

"A
m, i

(¸
m, i

!z
m, i

)a
m
F,

"[A(¸!z)]
m, i

a
m
F, (6)
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integrating w.r.t. y

y@
m, i

"CAA¸z!
z2
2
#BBD

m, i

a
m
F,

"a
m
F f

o
(z, m, i) (say) (7)

and integrating once again w.r.t. y

y
m, i

"CAA
¸z2
2

!

z3
6
#Bz#CBD

m, i

a
m
F,

"a
m
F f

1
(z, m, i). (8)

The force divided integration constants B
m, i

and C
m, i

are evaluated from the
condition that slope and displacement of the (m, i)th segment at z

m, i
"0 have the

same values as those of the (m, i#1)th segment at z
m, i`1

"l
m, i`1

, i.e., at maximum
z. Thus

B
m, i

"

>@
m, i`1

A
m, i

a
m
F

,

C
m, i

"

>
m, i`1

A
m, i

a
m
F

.

Here

>@
m, i

"max(y@
m, i

)"CAA¸l!
l2
2
#BBD

m, i

a
m
F"a

m
F f

o
(l, m, i),

>
m, i

"max(y
m, i

)"CAA
¸l2
2

!

l3
6
#Bl#CBD

m, i

a
m
F"a

m
F f

1
(l, m, i),

and the terminal end de#ection >
1,1

is given by

>
1,1

"max(y
1,1

)"CAA
¸l2
2

!

l3
6
#Bl#CBD

1,1

a
1
F"a

1
F f

1
(l, 1, 1)

"a
1
F/q"F/q,

where

q"
1

f
1
(l, 1, 1)

.

The de#ection, slope and other similar quantities along with their derivatives in
terms of F render the model very complex, which is simpli"ed by normalizing it
with >

1,1
to have all such quantities in terms of >

1,1
. Thus, the de#ection of the

(m, i)th segment at distance z
m, i

from the top of the segment in terms of overall
terminal end de#ection >

1,1
, with a

1
"1, is given by

y
m, i
>

1,1

"

a
m
F f

1
(z, m, i)

F f
1
(l, 1, 1)

"a
m
qf

1
(z, m, i)
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or

y
m, i

">
1,1

a
m
q f

1
(z, m, i). (9)

Also,

>
m, i

">
1,1

a
m
q f

1
(l, m, i), (10)

yR
m, i

">Q
1,1

a
m
q f

1
(z, m, i), (11)

>Q
m, i

">Q
1,1

a
m
q f

1
(l, m, i), (12)

y@
m, i

">
1,1

a
m
q f

o
(z, m, i), (13)

>@
m, i

">
1,1

a
m
q f

o
(l, m, i). (14)

With the above simpli"cation,
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f
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"

f
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,

while

B
2,n

"B
3,n

"C
2,n

"C
3,n

"0

and

B
1,n

"

>@
2,1

q>
1,1

A
1,n

a
1

"

q>
1,1

a
2

f
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(l, 2, 1)

q>
1,1

a
1
A

1,n

"

a
2

f
o
(l, 2, 1)

A
1,n

,

C
1,n

"

>
2,1

q>
1,1

A
1,n

a
1

"

q>
1,1

a
2

f
1
(l, 2, 1)

q>
1,1

a
1
A

1,n

"

a
2

f
1
(l, 2, 1)

A
1,n

,

since a
1
"1.

4. ENERGY EQUATION OF THE SYSTEM

According to energy conservation for an undamped system, the sum of kinetic
and potential energies is constant. Simpli"cation of the equation thus arrived at by
summing up the component potential and kinetic energies of the system at any time
will give the equation of motion of the undamped free vibrating system. The kinetic
and potential energies are evaluated as follows.

4.1. KINETIC ENERGY OF THE SYSTEM

The kinetic energy of the system is given by

KE"KE
M
#KE

T
(15)
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where (KE
M
) is the kinetic energy of the suspended masses and (KE

T
) is that of all

the segments in all the links.

4.1.1. Kinetic energy of the suspended masses

With the help of equation (12), the kinetic energy (KEM
m, i

) of the mass
M

m, i
suspended at the lower end of the (m, i)th segment is given by

KEM
m, i
"

M
m, i
>0 2

m, i
2

"

M
m, i

q2>0 2
1,1

2
[ f

1
(l, m, i)]2a2

m
"

M
m, i

q2>0 2
1,1

2
f
2
(l, m, i)a2

m
,

and the KE
M

of all the suspended masses is given by

KE
M

q2>0 2
1,1

2
3
+

m/1

a2
m

n
+
i/1

M
m, i

f
2
(l, m, i). (16)

Here M
m, i

will be zero for the segment with no suspended mass.

4.1.2. Kinetic energy of the segment mass

The kinetic energy KE
T

of the total n segments of all the links with the help of
equation (11) is given by

KE
T
"

1
2

3
+

m/1

a2
m

n
+
i/1

P
l
m, i

0

m
m, i

y5 2
m, i

dz

"

1
2

3
+

m/1

a2
m

n
+
i/1

m
m, i P

l
m, i

0

>0 2
1,1

q2[ f
1
(z, m, i)]2 dz

"

1
2

3
+

m/1

a2
m

n
+
i/1

m
m, i
>0 2

1,1
q2P

l
m, i

0

[ f
1
(z, m, i)]2dz

"

>0 2
1,1

q2

2
3
+

m/1

a2
m

n
+
i/1

m
m, i

f
3
(l, m, i). (17)

Here m
m, i

is the mass per unit length of the ith segment of the mth link and

f
3
(l, m, i)"P

l
m, i

0

[ f
1
(z, m, i)]2dz

"P
l
m, i

0
CAGA

¸z2
2

!

z3
6 B#Bz#CHD

2

m, i

dz
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"P
l
m, i

0
CA2GA

¸2z4
4

#

z6
36

!

¸z5
6 B#B2z2#C2#BA¸z3!

z4
3 B

#2BCz#CA¸z2!
z3
3 BD

m, i

dz

"CA2GA
¸2l5
20

#

l7
252

!

¸l6
36 B#

B2l3
3

#C2l#B A
¸l4
4

!

l5
15B

#CA
¸l3
3

!

l4
12B#BCl2HD

m, i

.

Thus, from equations (15)}(17), the KE of the whole system is given by

KE"C
3
+

m/1

a2
m

n
+
i/1

MM
m, i

f
2
(l, m, i)#m

m, i
f
3
(l, m, i)ND

q2>Q 2
1,1

2
. (18)

4.2. POTENTIAL ENERGY OF THE SYSTEM

The potential energy PE of the system is the sum of PE
E
, the potential energy

stored against sti!ness of all cantilever segments, PE
T
, potential energy due to gain

in height of the weight of all segments and PE
M

, potential energy due to rise in the
suspended masses against gravity. Thus, the total potential energy PE is given by

PE"PE
E
#PE

T
#PE

M
. (19)

The individual potential energies are formulated in the following subsections.

4.2.1. Elastic sti+ness energy

The potential energy stored in the hanging cantilever due to its material sti!ness
is given by

PE
E
"P

>
1,1

0

F d>
1,1

.

Since F"q>
1,1

,

PE
E
"P

>
1,1

0

q>
1,1

d>
1,1

"

q>2
1,1
2

. (20)

4.2.2. Rise of an element against gravity

As shown in Figure 4, the rise of an element ds at a distance z from the top of the
segment against gravity during bending is given by

h"P dh"P
z

0

(ds!dw)"P
z

0

(ds!Jds2!dy2)

"P
z

0

[1!M1!(y@)2N1@2]ds"P
z

0

[1!M1!1
2
(y@)2N] ds"

1
2 P

z

0

(y@)2ds

since y@@1.



Figure 4. Segment de#ection.
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Following the analysis of section 3 (equation (7)), the rise of the ith segment is
given by

h
m, i

"

1
2 P

z
m, i

0

(y@
m, i

)2ds

"

1
2 P

z
m, i

0

a2
mCAA¸s!

s2
2
#BBD

2

m, i

F2ds

"

>2
1,1

q2a2
m

2 CA2GA
¸2z3

3
#

z5
20

!

¸z4
4 B#BA¸z2!

z3
3 B#B2zHD

m, i

"

>2
1,1

q2a2
m

2
f
4
(z, m, i),

and its maximum value is given by

H
m, i

"

>2
1,1

q2a2
m

2
f
4
(l, m, i).

The overall or global rise of an element is given by

u
m, i

"h
m, i

#

n
+ H

m,j
. (21)
j/i`1
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The overall or global rise of a segment bottom end is given by

;
m, i

"

n
+
j/i

H
m,j

. (22)

4.2.3. Potential energy of the suspended masses

Using equation (22), the potential energy of a suspended mass M
m, i

is given by

PEM
m, i
"M

m, i
g;

m, i
"M

m, i
g

n
+
j/i

H
m,j

"

M
m, i

g>2
1,1

q2a2
m

2
n
+
j/i

f
4
(l, m, j),

and the potential energy of all the suspended masses of all the links is given by

PE
M
"

3
+

m/1

a2
m

n
+
i/1

M
m, i

g;
m, i

"

g>2
1,1

q2

2
3
+

m/1

a2
m

n
+
i/1
CMm, i

n
+
j/i

f
4
(l, m, j)D . (23)

4.2.4. Potential energy due to segments1 weight

Using equation (21), the potential energy of a small element of the (m, i)th
segment due to its weight is given by

d(PE
T
)
m, i

"m
m, i

gu
m, i

dz,

where m
m, i

is mass per unit length of the (m, i)th segment of the cantilever. Thus

(PE
T
)
m, i

"m
m, i

g P
l
m, i

0

u
m, i

dz"m
m, i
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l
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0
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#

n
+
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H
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"

m
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2
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!

¸l5
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¸l3
3

!

l4
12BBH

m, i

#l
n
+

j/i`1

f
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"
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1,1
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m

2 Cf6 (l, m, i)#l
m, i

n
+

j/i`1

f
4
(l, m, j)D"

m
m, i

g>2
1,1

q2a2
m

2
f
5
(l, m, i).

The PE
T

for all segments of all the links is given by

PE
T
"

3
+

m/1

a2
m

n
+
i/1

(PE
T
)
m, i

"

>2
1,1

q2g
2

3
+

m/1

a2
m

n
+
i/1

m
m, i

f
5
(l, m, i). (24)

Thus, by summing up its component given by equations (19), (20), (23) and (24),
the total PE of the system is

PE"

q>2
1,1
2

#

g>2
1,1

q2

2
3
+

m/1

a2
m

n
+
i/1
CMm, i

n
+
j/i

f
4
(l, m, j)#m

m, i
f
5
(l, m, i)D. (25)
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5. EQUATION OF MOTION OF AN UNDAMPED FREE SYSTEM

The energy conservation equation of the system is

KE#PE"constant.

With the values of KE and PE given by equations (18) and (25), the above equation
becomes

Cq2
y

3
+

m/1

a2
m

n
+
i/1

MM
m, i

f
2
(l, m, i)#m

m, i
f
3
(l, m, i)ND

>0 2
1,1
2

#Cqy#gq2
y

3
+

m/1

a2
m

n
+
i/1
GMm, i

n
+
j/i

f
4
(l, m, j)#m

m, i
f
5
(l, m, i)HD

>0 2
1,1
2

"constant.

By di!erentiating with respect to time, simplifying, rewriting the subscript y and
replacing >

1
simply by >, the equation becomes

M
y
>G #K

y
>"0. (26)

Similarly for de#ection in the x direction, the equation is

M
x
XG #K

x
X"0, (27)

where

M
y
"Cq2

y

3
+

m/1

a2
m

n
+
i/1

MM
m, i

f
2
(l, m, i)#m

m, i
f
3
(l, m, i)ND

y

, (28)

M
x
"Cq2

x

3
+

m/1

b2
m

n
+
i/1

MM
m, i

f
2
(l, m, i)#m

m, i
f
3
(l, m, i)ND

x

, (29)

K
y
"Cqy

#gq2
y

3
+

m/1

a2
m

n
+
i/1
GMm, i

n
+
j/i

f
4
(l, m, j)#m

m, i
f
5
(l, m, i)HD

y

(30)

and

K
x
"Cqx#gq2

x

3
+

m/1

b2
m

n
+
i/1
GMm, i

n
+
j/i

f
4
(l, m, j)#m

m, i
f
5
(l, m, i)HD

x

. (31)

6. STRUCTURAL OR HYSTERESIS DAMPING

When the structural material is cyclically stressed, the energy is dissipated due to
hysteresis losses, which are almost 0)2 times those of the strain energy of the system
for most of the structural materials [13}15]. The strain energy of the system in
> directional vibrations (equation (20)) is given by

;
s
"

q
y
>2

2
(32)

and equivalent damping energy dissipated per cycle [13, 14] is given by

;
d
"nc

ey
u>2,
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where u is the circular frequency of the vibration. With dissipation factor c (0)2 for
most of the metals), the relation becomes

nc
ey
u>2"

cq
y
>2

2

or equivalent viscous damping is

c
ey
"

cq
y

2nu
. (33)

The equivalent viscous damping force is thus

F
dy
"

cq
y

2nu
>Q .

Similarly for the X direction,

c
ex
"

cq
x

2nu
(34)

and

F
dx
"

cq
x

2nu
X0 .

7. EQUATION OF DAMPED FORCED VIBRATIONS

If F
x
and F

y
are two orthogonal exciting forces in the X and > directions acting

at the tip of the cantilever, then equations of damped forced vibrations are given by

M
y
>G #C

ey
>0 #K

y
>"F

y
, (35)

M
x
XG #C

ex
X0 #K

x
X"F

x
. (36)

Viscous damping of the system is ignored to view the response of the model and its
parameters exclusively. These are the second order di!erential equations of a forced
vibrating system [13] with an equivalent viscous damping term resulting from
cyclic hysteresis losses of structural strain energy.

8. SYSTEM MODEL, DATA AND SIMULATION

From the preceding sections, the mathematical model of the forced damped
system is therefore given by

M
y
>G "F

y
!C

ey
>0 !K

y
>, (37)

M
x
XG "F

x
!C

ex
X0 !K

x
X, (38)

where F
y

and F
x

are the exciting forces. Following the iterative computational
technique for the initial value problems of special second order di!erential



Figure 5. Block diagram for solution procedure.
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equations [16], the computational model is developed for the system under
consideration. Automatic halving of the time-step in case of non-convergence and
intelligently doubling it after a few time-steps to get a faster solution with
corresponding change of related terms in two cases have been added to the original
scheme. The physical data of the system in the present case will need a computer
code based on numerical methods, like the improved relaxation method [17], to
converge the system with some implicit parameters introducing loop in this
procedure as shown in block diagram in Figure 5. For instance, in this procedure,
>

2,1
and >

3,1
, the bottom end de#ections of link numbers 2 and 3, depend upon
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a
2

and a
3
, the load-sharing ratios, respectively, while a

3
and hence a

2
depend upon

>
2,1

and >
3,1

. The mathematical model of the system is given by equations (37)
and (38) and its response depends upon their coe$cients given by expressions
(28)}(34). As the summations in expressions (28)}(31) are over the links from 1 to
3 and a

3
and b

3
being non-zero, it is clear that the support tube has a de"nite and

important role. The frequent presence of quantities pertaining to link no. 3,
especially in the outer loop of the #ow chart (Figure 5) also indicates the speci"c
role of the support tube, but the positive or negative contribution of its parameters,
however, cannot be directly assessed. Taking the cantilever and the support tube
symmetric about the axis of the tube, only equation (37) may be solved to simulate
the response of the system. The system simulated with the model developed and
analyzed in this study comprises a 105 cm long inner aluminum tube, supporting
a mass of 13 g at its bottom end and having 527 mm4 moment of inertia concentric
with a 2)0 mm thick aluminum support tube of various lengths and diameters
(Figure 1). The damping response of the system in free vibration for a set of data is
shown in Figure 6. This, however, does not elaborate the contribution of support
tube parameters. To show their contribution, the analytical solution [13, 14, 18] of
equation (37) is used both in free and forced vibrations. The geometric data of an
experimental set-up was used to see the response of various parameters and results
obtained are plotted in Figures 7}9. The e!ective mass M

y
(equation (28)), e!ective

spring constant K
y

(equation (30)), the circular frequency u
n

given by

u
n
"S

K
y

M
y

, (39)

and the critical damping C
c
given by

C
c
"2M

y
u

n
(40)

are normalized by their respective values for minimum parametric values of the
support tube and plotted together to see their response versus support
tube parameters and also to compare their mutual behavior. Similar quantities
pertaining to and characteristic of free and forced vibrations which may enable the
comparison and show the control and damping response of support tube
parameters are listed and de"ned in the following subsections and their normalized
values are plotted in Figures 7}9.

8.1. FREE VIBRATIONS

The analytical solution of equation (37) for free vibration (i.e., with F
y
"0) is

given by

y
f
">

f
e!m

f
u

n
t sin(u

d
t#/

f
)"
>
f

Et
f

sin(u
d
t#/

f
)

or

y
f
"A

f
sin(u

d
t#/

f
), (41)



Figure 6. Time response of the system.
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where u
d
, the frequency of damped oscillations is

u
d
"u

n
J1!m2

f
, (42)

/
f
, the phase angle in free vibration with zero initial velocity is

/
f
"tan~1A

J1!m2
f

m
f

B, (43)

>
f
, the initial maximum de#ection under constant initial potential energy input;

s
,

(equation (32)) is

>
f
"S

2;
s

q
y

, (44)



Figure 7. Response versus support tube length of (a) system constants, (b) free vibration para-
meters, (c) forced vibration parameters.
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m
f
, the damping factor is

m
f
"S

C
f

C
c

, (45)

and the base value of vibration amplitude reduction term is

E
f
"em

f
u

n , (46)



Figure 8. Response versus support tube moment of inertia (a) system constants, (b) free vibration
parameters, (c) forced vibration parameters.
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and the net unit time vibration amplitude is given by

A
f
"

>
f

E
f

. (47)

Here C
f

is the damping coe$cient in free vibrations given by equation (33) with
u"u

n
and C

c
given by equation (40).



Figure 9. Response versus annular ring sti!ness of (a) system constants, (b) free vibration para-
meters, (c) forced vibration parameters.
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8.2. FORCED VIBRATIONS

The steady state analytical solution of equation (37) for forced vibration is given
by

y
F
">

F
sin(ut!/

F
), (48)
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where u is the circular frequency of exciting force, while /
F
, the phase angle, is given

by

/
F
"tan~1A

2m
F
(u/u

n
)

1!(u/u
n
)2B, (49)

>
F
, the amplitude of de#ection in forced vibration, is given by

>
F
"

>
0

J[1!(u/u
n
)2]2#[2m

F
(u/u

n
)]2

, (50)

m
F
, the damping factor in forced vibrations, is given by

m
F
"S

C
F

C
c

, (51)

and >
0
, the zero frequency de#ection, is given by

>
0
"

F
0

K
y

. (52)

Here C
F

is the damping coe$cient in forced vibrations given by equation (33) with
u being the frequency of the exciting force.

9. RESULTS' ANALYSIS AND DISCUSSIONS

Figure 6 shows the overall damping response of the system. The positive or
negative contribution of the support tube parameters cannot be assessed from this
"gure. Figures 7}9, however, show the response of three main support
tube parameters, viz., tube length, moment of inertia and annular ring sti!ness
respectively. Part (a) of these "gures show the response of the system's overall
constants versus support tube parameters, part (b) shows the vibration
characteristics in case of free vibrations of the system under the same exciting
energy input and part (c) shows the vibration characteristics in case of forced
vibrations of the system under the same continuous harmonic excitation. The
response of these parameters is elaborated in the following sections.

9.1. SUPPORT TUBE RESPONSE

The response of the two parameters of the support tube is discussed in the
following subsections.

9.1.1. ¸ength response

Figure 7 shows that the system constants, namely the e!ective spring constant
K

y
, the critical damping coe$cient C

c
and the natural frequency u

n
, increase

non-linearly with the length while the e!ective mass M
y
remains almost constant.

The rise in K
y
, C

c
and u

n
, however, is insigni"cant in the region within 500 mm

length of the support tube, while beyond this they increase exponentially with



MODELING AND SIMULATION OF VIBRATION CONTROL 911
length. In case of free vibrations, the time-based reduction term E
f
, damping

coe$cient C
f

and damped frequency u
d

increase while both initial amplitude of
vibration >

f
and its net value at unit time A

f
decrease with the tube length. The

phase angle /
f

and the damping ratio m
f

do not change appreciably. From this it is
evident that increase in support tube length contributes positively. Within 500 mm
support tube length, its contribution is insigni"cant, while beyond this its
e!ectiveness increases exponentially. In the case of forced vibrations both damping
coe$cient C

F
and damping ration m

F
increase while initial amplitude >

0
, phase

angle /
F

and net amplitude >
F

decrease with length. This shows that the support
tube length contributes positively to damping as well as control of forced
vibrations. The contribution of the support tube length has two aspects, viz.
resistance to the initial amplitude throw and quicker damping of the excited
vibrations. Both of these positive aspects increase with the length of the support
tube, though they are insigni"cant in earlier regions.

It is also clear from the results (Figure 7) that in the present set-up 300 mm length
of support tube is almost ine!ective. However, beyond this it becomes e!ective
particularly above the length of 700 mm; its contribution is quite reasonable. This
provides an adjustable parameter to suitably control the possible vibration
problem.

9.1.2. Moment of innertia response

Figure 8 shows that the system constants, viz., the e!ective spring constant K
y
,

the critical damping C
c
and natural frequency u

n
, increase non-linearly with the

moment of inertia of the support tube while the e!ective mass M
y
remains almost

constant with slight initial decrease. This contribution, however, is signi"cant in the
region within 3000 mm4 of moment of inertia of the support tube, while beyond this
the behavior is asymptotic. In the case of free vibrations, the time-based reduction
term E

f
, damping coe$cient C

f
and damped frequency u

d
again increase, while

both initial amplitude of vibration and its net value at unit time A
f

decrease
asymptotically with the increase in moment of inertia of the support tube. The
phase angle /

f
and the damping ratio m

f
again do not change appreciably. From

this it is evident that the increase in moment of inertia of support tube contributes
positively. However, in the region beyond 3000 mm4 its contribution diminishes
asymptotically. In the case of forced vibrations, both the damping coe$cient and
damping ratio m

F
increase while initial amplitude >

0
, phase angle /

F
and net

amplitude >
F

decrease with the increase in moment of inertia of the support tube.
This shows that the support tube moment of inertia contributes positively to
damping as well as control of forced vibrations. The contribution of the support
tube moment of inertia has again two aspects, viz., resistance to the initial ampli-
tude throw and quicker damping of the excited vibrations. Both these positive
aspects increase with the moment of inertia of the support tube, though they
become less signi"cant beyond 3000 mm4. The suitable values of second moment of
area for the system under consideration is thus below 3000 mm4. Beyond this the
further gain in control of oscillation amplitude and damping of perturbation is very
small. The former zone is most suitable as its e!ectiveness increases sharply and the
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later becomes ine!ective because of its slight further gain. This provides another
adjustable parameter to suitably handle the possible vibrations.

9.2. ANNULAR RING RESPONSE

Figure 9 shows that the system constants, namely the e!ective spring constant
K

y
, the critical damping C

c
and natural frequency u

n
increase linearly with the

annular ring sti!ness, while the e!ective mass M
y
remains constant. In the case of

free vibrations, the time-based reduction term E
f
, damping coe$cient C

f
and

damped frequency u
d
, increase while both initial amplitude of vibration >

f
and its

net value at unit time A
f

decrease with the annular ring sti!ness. The phase angle
/
f
and the damping ratio m

f
do not change appreciably. This shows that increase in

annular ring sti!ness also contributes positively. In the case of forced vibrations,
both damping coe$cient C

F
and damping ratio m

F
increase, while initial amplitude

>
0
, phase angle /

F
and net amplitude >

F
decrease with annular ring sti!ness. This

shows that the annular ring sti!ness contributes positively to damping as well as
control of the forced vibrations. The contribution of the annular ring sti!ness also
has two aspects, viz., resistance to the initial amplitude throw and quicker damping
of the excited vibrations. Both these positive factors increase linearly with increase
in the annular ring sti!ness providing another suitable adjustable parameter to
minimize the adverse e!ects of the possible perturbations.

9.3. MODAL RESPONSE OF THE PARAMETERS

Vibration amplitude was the critical parameter in the system under study in
which the fundamental mode is a dominant one. In the higher mode shapes of
vibrations, the amplitude of the bottom end of the inner tube will decrease further
and in some of the mode shapes, the support point of the annular ring will become
the node and hence the anti-node at the bottom end of the tube will decrease further
depending upon its distance from the node. This will change the magnitudes of the
response of the support tube parameters with no change in their trend.

A clear picture of the behavior of the support tube parameters is given above.
The model developed can identify the optimal values of these parameters for
a given set-up which can help to facilitate an overall better and safer system
operation. Moreover, by appropriately setting the support tube length and second
moment of the area to a certain suitable limit and increasing the sti!ness of the
annular ring, the suitable value of natural frequency can be obtained well away
from the frequency range of possible perturbations and, consequently, an e!ective
control of vibrational devastation can be achieved. Numerically, the most e!ective
of these parameters studied is sti!ness of the annular ring and the least responsive is
the second moment of inertia.

10. CONCLUSION

From this study it can be concluded that the system can be made sti!er and
resistant to vibrational devastation by making use of the intermediate support. If
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the frequency zone of possible perturbations of a system is known, the support tube
parameters can be adjusted to mismatch the natural frequency of the system with
that of the perturbation and thus the resonance catastrophe can be avoided. By
increasing the natural frequency of the system, the net amplitude of the vibrations
can be minimized to a reasonable extent along with its quicker damping. Thus, the
model developed can work as a suitable tool to assess the optimal values of support
tube parameters and hence can help in avoiding vibrational devastation.
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